MATHEMATICAL ENGINEERING TECHNICAL REPORTS A Non-Interior Implicit Smoothing Approach to Complementarity Problems for Frictionless Contacts

نویسندگان

  • Yoshihiro KANNO
  • Makoto OHSAKI
  • Yoshihiro Kanno
  • Makoto Ohsaki
چکیده

This paper presents a non-interior point method for a frictionless contact problem in the large deformation, where we can exploit the warm start condition in an incremental path-following method such as the arc-length method. We propose a novel reformulation of the nonlinear complementarity problem based on the smoothed Fischer–Burmeister function, in which the smoothing parameter is considered as an independent variable, and we add a nonlinear equation so that the smoothing parameter behaves as a measure of the residual of the complementarity conditions. The reduced system of nonlinear equations is solved by using a conventional method for nonlinear equations with a fast local convergence from the initial point which is defined by using the solution of the previous loading stage. Throughout numerical examples it is shown that in many cases the solution can be found within four iterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATHEMATICAL ENGINEERING TECHNICAL REPORTS An Implicit Formulation of Robust Structural Optimization under Load Uncertainties

This paper discusses an implicit reformulation of the MPEC (mathematical program with complementarity constraints) problem in order to solve a robust structural optimization with a non-probabilistic uncertainty model of the static load. We first show the relation among the robust constraint satisfaction, worst scenario detection, and robust structural optimization, and derive the MPEC formulati...

متن کامل

Improved infeasible-interior-point algorithm for linear complementarity problems

We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...

متن کامل

A Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem

In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

Non-Interior continuation methods for solving semidefinite complementarity problems

There recently has been much interest in non-interior continuation/smoothing methods for solving linear/nonlinear complementarity problems. We describe extensions of such methods to complementarity problems defined over the cone of block-diagonal symmetric positive semidefinite real matrices. These extensions involve the Chen-Mangasarian class of smoothing functions and the smoothed Fischer-Bur...

متن کامل

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009